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1. Introduction

Factor analysis (FA) is a statistical dimension-reduction technique for modeling the
covariance structure of high-dimensional data using a small number of latent variables
(Ghahramani and Hinton, 1997). It can be extended by allowing different local factor mod-
els in different regions of the input space. This results in a model that performs clustering
and dimension reduction at the same time, and can be thought of as a reduced dimension
mixture of Gaussians. Ghahramani and Hinton (1997) and Hinton et al. (1997) originally
proposed mixtures of factor analyzers (MFAs) model. They used this model to visualize high-
dimensional data in a lower-dimensional space to explore the grouping structure. Bishop
(1998) and Tipping and Bishop (1997, 1999) considered the related model of mixtures of
principal component analyzers for the same purpose. MFA model is in fact a nonlinear model,
which can be considered as a combination of traditional FA model and the finite mixture mod-
els. Therefore, MFA model offers a way to overcome the linear limitation of the traditional
FA model. In recent years, MFA model has received considerable interest. See, for example,
Arminger et al. (1999), Dolan and Van der Maas (1998), Fokoué and Titterington (2003), and
Yung (1997). McLachlan et al. (2003) discussed the application of MFAs to density estimation
and the clustering of high-dimensional data.

MFA has been traditionally fitted using the maximum likelihood estimator (MLE) based on
the normality assumptions of the random terms. Ghahramani and Hinton (1997) introduced
an exact Expectation-Maximization (EM) algorithm to compute the MLE of MFA. However,
it is well known that the normal-based MLE can be very sensitive to outliers. In fact, even a
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single outlier can make an enormous impact on the MLE, which in mixture models means
that at least one of the component parameter estimates might be arbitrarily large.

In this article, a robust fitting of MFAs is introduced based on the idea of trimmed like-
lihood estimator (TLE; Neykov et al., 2007). The TLE is designed to fit the majority of the
data, whereas the remaining data will be considered as outliers and thus will not be used for
parameter estimation. We use a simulation study and a real data application to demonstrate
the robustness of the new estimation procedure and compare it with the traditional normality-
based maximum likelihood estimate.

The rest of the article is organized as follows. In Section 2, we briefly introduce the EM
algorithm for the FA and the MFA. Section 3 presents the robust fitting of the MFA using the
TLE. Simulation results and a real data application are presented in Section 4. A discussion
section ends the article.

2. Mixtures of factor analyzers

2.1. Factor analysis

Lety,, ..., Yy, bearandom sample of size n on a p-dimensional random vector. A typical FA
model is given by:

yi=[L+Az,»—|—e,-,i=1,...,n, (21)

where pu is the mean of y;, z; is a g-dimensional (g < p) vector of latent or unobservable vari-
ables called factors, and A (p x q) is a factor loading matrix. The factors z; are assumed to be
ii.d. NV;(0, I,), independent of the errors e;, which are assumed to be i.i.d. N/, (0, ¥) with W a
diagonal matrix W = diag(o7, ..., o). The marginal density of y; is then \V,, (., AAT + W).
For the purpose of classifying and reducing data, the traditional FA is a useful tool for reduc-
ing a mass of information to an efficient description and grouping interdependent variables
into descriptive categories. In statistics, it is a method used for explaining data, in particular,
correlations between variables in multivariate observations.
The FA model (2.1) can be fitted by maximizing the log-likelihood:

- - 1
€(6) = log {<2n)m |AAT + W[ exp [—E(Y,» — W AN+ W)y - u)“ ,
i=1
with 8 = (u”, AT, WT)T, which can be computed iteratively via the EM algorithm if z; is
considered the missing data.

E-step: Given the current estimator %, calculate the following conditional expectation
given the observed data y;:

a® = (uly, 00) = A% (v + A<">A<">T)71 Vi
b = E (22 1y, 0) =1 - A% (w® + A(k)A(k)Tyl A®

T
—1 -1
n {A(k)T (\Ij(m +A(k)A(k)T> Yi} {A(k)T (ll,uo +A(k)A(k)T) yi}
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M-step: Calculate

plh =30 (Yi _ A<k)a§k)> ’

i=1

n n -1
A*FD {Zyial‘(k)T} {Zbgk)} 7
i=1

i=1

1 n
WD = —diag {Z (vl = A% aly )} :

i=1

2.2. Mixtures of factor analyzers

Although the FA model (2.1) provides a global linear model for the presentation of the data in
a lower-dimensional subspace, its application is limited when the data are not homogenous.
The MFA, which allows different local factor models in different regions of the input space, is
a natural extension of the FA. Assume we have a mixture of m factor analyzers with mixing
proportion 7, j = 1, ..., m. The marginal density of y is given by:

f:0) =) mNy(y: by, AAT + W), (22)

j=1

where 0 = (a7, uT, AT, DT, w=(m1,..., 7). =T, ..., n0)T, A= (AT,
..., Aj)". Here, u; is the mean of the jth component, A; is the factor loading matrix of
the jth component, and W is the diagonal matrix of the error terms. It will be useful in the
estimation equations to have a definition of the MFA in terms of conditional densities. For
the jth component, the conditional density function is:

fiylz) = Np(y; . + Ajz, ).

Within each component of the mixture, we have the following joint density of y and z:

MRl IR el )
z P\l o] AT I, |}’

Similar to the FA, the MFA can be estimated by maximizing the following likelihood:

€O)=> log) m; |:(2JT)P/2|AjA]T + |12

i=1 j=1
1
exp {—Em — 1) (AAT+ )y - ﬂﬂ” : (2.3)

However, there is no explicit solution for the above maximizer. Ghahramani and Hinton
(1997) introduced an EM algorithm to maximize (2.3). More specifically, let w;; be an indica-
tor variable indicating which component y; comes from. That is,

w0 = { 1, ify;isfrom jth component, (2.4)

0, otherwise.
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Then the complete log-likelihood for {(y;, z;, wij),i=1,...,n,j=1,...,m}is

:(0) =) log[ [ =" [(2n>P/2|\If|”2 exp {—%(yi — = Ajz) Uy — - Am)” y
=1 j=1
The EM algorithm iterates between E-step, which computes the expected complete log-
likelihood given current parameter estimates, and M-step, which maximizes the expected
complete log-likelihood calculated in the E-step. We summarize the EM algorithm to maxi-
mize (2.3) as follows:

E-step: Given the current estimator 6

given the observed data y:

® calculate the following conditional expectation

k k kAT
N 7, AT )

m T =
Zj:l ﬂj(k)Np(YiQ M;k), Aﬁk)AEk) + w®)

ai(]I'() =E (Zi|Yi, wjj =1, o(k)) = F](vk) (Yi - ﬂ;k)> ,
by = E (2] lyi oy = 1,6%) =1 =T VA
T
+10 (v = w) frio G-}

where I'; = A]T(\IJ + A]-A]T)’l.
M-step: Calculate

1 n
k) _ L (k)
= E Py,
i=1

n n -1
(k+1) (k) (k) 5 (k) (k)
pit = {§ :pij (yi — Ajay; )} {§ :Pij } ;
i=1 i=1

n —1
k k) k 0T k) (k
A; +1) _ {} :ng (Yi _ IL; +1))a1§j) } {§ :pgj)blgj)} ,
i=1

i=1

0
1] ’

E(wijlyi, %) =

n m
Wk = %diag Do P Y = A ) - )

i=1 j=1

3. Robust fitting of mixtures of factor analyzers using the trimmed likelihood
estimator

The MLE introduced in Section 2 is easy to implement, but very sensitive to outliers. Even
a single outlier can make an enormous impact on the MLE, and make at least one of the
component parameters to be arbitrarily large. To overcome this, Andrews et al. (2011), Baek
and McLachlan (2011), and McLachlan et al. (2007) proposed mixtures of ¢-factor analyzers
by assuming multivariate ¢-distributions for component errors and factor distributions. In this
section, we apply the idea of TLE, proposed by Neykov et al. (2007), to fit the MFAs in a robust
way. Compared to the proposed method based on TLE, the mixture of t-distributions has a
very small breakdown point (BP) and is not robust when the outliers are extreme (Hennig,
2004; Yao et al., 2014).



1284 L. YANG ET AL.

Suppose a number k (k < n) of n observations are regular observations in the data, and
the remaining n — k observations may be gross or outliers. The basic idea of TLE is removing
the n — k observations that do not follow the model, and using only the k observations to
fit the model. The combinatorial nature of the TLE can be expressed as:

max max Z log f(y:; 9),

Iely, 0 ol

where I is the set of all k-subsets of (1, ..., n) and f(y; #) is defined in (2.2). The fact that all
possible (Z) partitions of the data have to be fitted by the MLE makes the estimation proce-
dure computationally very expensive. To find an approximate TLE solution for large datasets,
an algorithm called FAST-TLE was developed by Neykov and Miiller (2003). The basic idea
behind FAST-TLE algorithm contains two steps: a trial step followed by a refinement step.
(i) Trial step: Randomly select a subsample of size k* from the data sample and then fit
the model to that subsample to get a trial maximum likelihood estimate.

(ii) Refinement step: This step is based on the so-called concentration procedure.

(a) Starting with the trial maximum likelihood estimate, find a combination with the
k smallest negative log-likelihoods based on the current estimate.

(b) Obtain an improved estimator by fitting the model to these k cases.

(c) Repeat (a) and (b) until convergence.

At the end of this step, the solution with the largest trimmed likelihood is stored. This

value may not be guaranteed to be the global optimal but would be a close approxima-

tion to it.

The choice of trial size k* and refinement subsample size k are related to the BP. The BP (i.e.,
the smallest fraction of contamination that can cause the estimator to take arbitrary large val-
ues) of TLE was studied by using d-fullness technique. Vandev and Neykov (1993) determined
the value of d for the mixtures of normals to be m(p + 1). It was proved that if log f(y) is d-
full, then the BP of TLE is not less than % min{n — m + 1, m — d + 1} (Neykov and Miiller,
2003). The trial subsample size k* should be greater than or equal to d for the existence of
MLE. The choice of k can be any number within [d, n]. When k = [ (n + d 4 1)/2], the BP
of the TLE is maximized (Neykov and Miiller, 2003). If the expected percentage of outliers o
in the data is a known priori, a recommended choice of k is [n(1 — &) |, which can increase
the efficiency of the TLE.

The process of TLE applied particularly to the MFAs can be performed as follows:

Input: A trial subset with sample size equals to k* and initial parameters © =

(0T, pOT AOT yOTYT,
Output: A subset of size k, which has the k smallest negative log-likelihoods.
At the (I + 1)th iteration:
E-step: Compute the expectation of component indicators w;;, latent variable z, and zz"
based on the current subsample of size k.
M-step: Maximize the complete log-likelihood of subsample of size k with respect to each
unknown parameter and thus get a new parameter

pUth — (n,(lJrl)T (+DT A (DT lIJ(IH)T)T

n

T-step: Define a new subsample of size k, which has the k smallest negative log-likelihoods
with the new parameter /",
Repeat EMT steps until convergence.
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4, Simulation study and real data application

4.1. Simulation study

In this section, we use a simulation study to assess the performance of the MLE and the TLE
to the MFAs. For TLE, 20 randomly generated initial values are used and TLE reports the
single best estimate whose log-likelihood is the biggest. True value (T) is also used as initial
value for MLE and TLE. For the 20 initial values, we first use the R code “hc” from the R
package “mclust” to cluster the randomly generated subsets of the data and then use the R
code “factanal” from the R package “stats” to do FA for each cluster. The trimming proportion
a is set to be 5% and thus k = | n(1 — «) ] is used for TLE in all examples. We will discuss how
to choose « data adaptively in Section 5.
A two-component MFA is considered in the simulation:

2

) =D TNy g AJAT + W),

j=1

where the mixing proportions are 7; = 0.4 and 7, = 0.6. The means g, and p, are p x 1
vectors with all the elements equal to 0 and 5, respectively, and the factor loading matrices A
and A, are p x 2 matrices with all the elements equal to 0.5 and 1, respectively. That is,

0 5
=1 : sy = | )
px1 > px1
0.5 0.5 1 1
Ar=| A=
0.5 0.5 2 1 1 o

We consider p = 10, 20, and 30. Sample sizes of n = 200 and n = 400 are conducted over 200
repetitions. To assess the robustness of the estimators, only (1 — «p) x 100% of the observa-
tions are generated from the above model with oy = 0, 0.01, 0.03, and 0.05, and the remain-
ing oy x 100% of the data is generated randomly from U (20, 30). The simulation was done
through R on a personal laptop with an i7-3610QM CPU and 8 GB of RAM. The computation
time of the new algorithm (with 20 random initial values) is 45 seconds for n = 200 and 61
seconds for n = 400.

The performance of the estimates is measured by the misclassification probability (MCP),
which is defined to be the proportion of observations that are misclassified:

n 2
MCP =1 - Zzwijlp,-j>0.5 /n,
=1 j=1

where w;j, defined in (2.4), indicates which component y; comes from, and p;; is the classifi-
cation probability calculated by

ﬁij(Yﬁ ﬁ’jv AjA]T +V¥)
2 A A ~ ~ ~ 9
> i AN (yis By, AJAT + W)

pij= i=1,...,f’l,j=1,2-
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Table 1. Average (Std) of MCP, with n = 200.

Dimension Method a, =0 a, = 0.01 a, = 0.03 o, = 0.05
p=10 MLE 0.016 (0.012) 0.117 (0.032) 0.103 (0.031) 0.089 (0.029)
TLE(T) 0.016 (0.011) 0.017 (0.010) 0.018 (0.012) 0.017 (0.012)
TLE(I) 0.018 (0.012) 0.019 (0.011) 0.020 (0.013) 0.020 (0.014)
p=20 MLE 0.018 (0.012) 0.089 (0.030) 0.097 (0.029) 0.140 (0.029)
TLE(T) 0.018 (0.012) 0.019 (0.013) 0.020 (0.013) 0.067 (0.010)
TLE(I) 0.020 (0.014) 0.022 (0.015) 0.022 (0.014) 0.070 (0.013)
p=30 MLE 0.151(0.354) 0.076 (0.025) 0.105 (0.031) 0.100 (0.032)
TLE(T) 0.151(0.353) 0.026 (0.014) 0.033(0.018) 0.021(0.012)
TLE(I) 0.145 (0.347) 0.029 (0.021) 0.040 (0.036) 0.026 (0.029)

Note that for mixture models there are well-known label switching issues (Celeux, et al., 2000;
Griin and Leisch, 2009; Jasra et al., 2005; Stephens, 2000; Yao, 2012a, 2012b; Yao and Lindsay,
2009). In our simulations, the labels are found by minimizing the MCP.

Tables 1 and 2 report the means and standard deviations of MCP for n = 200 and 400,
respectively. Based on the above tables, both TLE(T) and TLE(I) have smaller MCP than MLE
for all three p values and both n = 200 and n = 400. In Tables 3 and 4, we also report the
means and standard deviations of the Euclidean distance between the estimates 71, fit,, and
fL, and their corresponding true values based on 200 repetitions. From the tables, we can see
that the TLEs with both true initial values and random initial values have better performance
than the MLE when there are outliers, especially for u, and ;. The TLEs with randomly
generated initial values work almost the same as those with true initial values. In addition, the
TLE still works well when the trimming proportion is larger than the proportion of outliers.
Furthermore, when there are no outliers (¢g = 0), TLE has comparable performance to the
traditional MLE.

4.2. Real data application

In this example, we consider applying both MLE and TLE of the MFA to the wine data, which
is avaijlable at the Machine Learning Repository of the University of California. The dataset
contains the results of chemical analysis of wines grown in the same region in Italy, but derived
from three different cultivars. Therefore, a three-component mixture model is suitable to fit
the data if we do not use the cultivars of the wines. The analysis determined the quantities of
p = 13 constituents found in each of n = 178 wines. Both MLE and TLE of the MFA were
fitted to this dataset. Similar to the simulation study, the trimming proportion is set to be 0.05
for TLE.

Table 2. Average (Std) of MCP, with n = 400.

Dimension Method a, =0 a, =0.01 a, = 0.03 o, =0.05
p=10 MLE 0.014 (0.006) 0.125 (0.024) 0.123 (0.020) 0.130 (0.019)
TLE(T) 0.014 (0.006) 0.025 (0.007) 0.044 (0.006) 0.064 (0.006)
TLE(I) 0.014 (0.006) 0.026 (0.008) 0.044 (0.006) 0.064 (0.006)
p=20 MLE 0.014 (0.006) 0.110 (0.021) 0.123 (0.022) 0.131(0.019)
TLE(T) 0.014 (0.006) 0.025 (0.007) 0.044 (0.006) 0.065 (0.007)
TLE(I) 0.014 (0.006) 0.025 (0.007) 0.045 (0.006) 0.065 (0.007)
p =30 MLE 0.016 (0.008) 0.096 (0.021) 0.124 (0.020) 0.091(0.022)
TLE(T) 0.016 (0.009) 0.025 (0.006) 0.047 (0.008) 0.016 (0.007)
TLE(I) 0.016 (0.009) 0.025 (0.007) 0.047 (0.008) 0.017 (0.008)
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Table 3. Average (Std) of Euclidean distance, with n = 200.

Dimension Method a, =0 a, = 0.01 a, = 0.03 o, = 0.05
p=10 MLE J7%% 0.023 (0.026) 0.051(0.032) 0.042 (0.038) 0.044 (0.033)
5% 0.025 (0.034) 1.359 (0.469) 2.979 (1.505) 6.368 (0.825)
T 0.001(0.002) 0.021(0.012) 0.021(0.016) 0.030 (0.016)
TLE(T) ”y 0.024 (0.020) 0.023 (0.020) 0.021(0.021) 0.025 (0.014)
J75% 0.028 (0.030) 0.030 (0.035) 0.024 (0.028) 0.032 (0.035)
T 0.001(0.002) 0.001(0.002) 0.002 (0.003) 0.003 (0.004)
TLE(I) ”y 0.026 (0.022) 0.025 (0.021) 0.021(0.022) 0.030 (0.030)
J75% 0.030 (0.034) 0.033(0.038) 0.031(0.066) 0.036 (0.038)
bioe 0.001(0.002) 0.001(0.002) 0.002 (0.003) 0.003 (0.004)
p=20 MLE "y 0.022 (0.015) 0.046 (0.091) 0.042 (0.024) 0.042 (0.027)
J75% 0.027 (0.029) 0.849 (0.298) 2.792 (0.479) 5.449 (0.690)
T 0.001 (0.001) 0.013 (0.009) 0.020 (0.012) 0.028 (0.014)
TLE(T) "y 0.023 (0.015) 0.026 (0.024) 0.023 (0.018) 0.025 (0.016)
J75% 0.029 (0.030) 0.036 (0.046) 0.030 (0.030) 0.031(0.036)
) 0.001(0.002) 0.001(0.002) 0.002 (0.003) 0.003 (0.003)
TLE(I) "y 0.024 (0.016) 0.029 (0.025) 0.027 (0.025) 0.029 (0.023)
J75% 0.039 (0.057) 0.047 (0.068) 0.037(0.037) 0.038 (0.040)
) 0.001(0.002) 0.002 (0.003) 0.002 (0.003) 0.003 (0.003)
p =30 MLE J12% 0.004 (0.010) 0.034 (0.022) 0.040 (0.024) 0.018 (0.032)
J75% 0.005 (0.021) 0.528 (0.213) 2.248 (0.392) 1.551(2.216)
) 0.001 (0.001) 0.008 (0.008) 0.019 (0.012) 0.010 (0.016)
TLE(T) e 0.004 (0.009) 0.024 (0.015) 0.024 (0.014) 0.010 (0.018)
o 0.009 (0.043) 0.027 (0.033) 0.028 (0.031) 0.008 (0.020)
boY 0.001(0.007) 0.002 (0.002) 0.002 (0.003) 0.001(0.003)
TLE(I) 2% 0.004 (0.010) 0.047 (0.201) 0.079 (0.465) 0.044 (0.401)
Ry 0.012 (0.063) 0.037 (0.048) 0.039 (0.049) 0.013 (0.036)
bA% 0.001(0.001) 0.002 (0.002) 0.003 (0.007) 0.001 (0.005)

Table 4. Average (Std) of Euclidean distance, with n = 400.

Dimension Method a, =0 a, = 0.01 a, = 0.03 a, = 0.05
p=10 MLE "y 0.010 (0.007) 0.031(0.020) 0.023 (0.015) 0.020 (0.013)
ot 0.013 (0.018) 1.566 (0.289) 3.757 (0.364) 6.630 (0.595)
2B 0.001 (0.001) 0.025 (0.011) 0.026 (0.010) 0.030 (0.011)
TLE(T) J12H 0.011(0.008) 0.012 (0.009) 0.012 (0.009) 0.012 (0.008)
o 0.015 (0.021) 0.016 (0.017) 0.013 (0.014) 0.012 (0.012)
) 0.001 (0.001) 0.001 (0.001) 0.001(0.001) 0.002 (0.002)
TLE(I) e 0.011(0.009) 0.012 (0.009) 0.013 (0.009) 0.012 (0.009)
ot 0.016 (0.022) 0.017 (0.019) 0.015 (0.016) 0.014 (0.014)
T 0.001(0.007) 0.001(0.007) 0.001(0.001) 0.002 (0.002)
p=20 MLE e 0.011(0.006) 0.025 (0.013) 0.021(0.012) 0.020 (0.014)
y: 0.013 (0.013) 1.056 (0.235) 2.963(0.324) 5.713 (0.51)
b 0.001(0.007) 0.018 (0.008) 0.024 (0.010) 0.028 (0.010)
TLE(T) e 0.011(0.007) 0.011 (0.006) 0.012 (0.008) 0.012 (0.008)
"y 0.014 (0.016) 0.016 (0.016) 0.013 (0.013) 0.013 (0.015)
boN 0.001(0.001) 0.001(0.001) 0.001 (0.001) 0.002 (0.002)
TLE(I) e 0.012 (0.008) 0.011 (0.006) 0.012 (0.008) 0.013 (0.014)
"y 0.016 (0.020) 0.018 (0.017) 0.014 (0.014) 0.015 (0.016)
boN 0.001(0.001) 0.001(0.001) 0.001 (0.001) 0.002 (0.002)
p =30 MLE J72% 0.011(0.008) 0.021(0.013) 0.022 (0.014) 0.016 (0.014)
1y 0.014 (0.015) 0.715 (0.171) 2.503 (0.316) 3.616 (2.238)
b N 0.001(0.001) 0.013 (0.008) 0.022 (0.010) 0.021(0.016)
TLE(T) J7%% 0.012 (0.009) 0.011(0.007) 0.012 (0.007) 0.009 (0.008)
Iy 0.018 (0.024) 0.014 (0.013) 0.017 (0.019) 0.009 (0.011)
T 0.001(0.001) 0.001(0.001) 0.001(0.002) 0.001(0.002)
TLE(I) J7%% 0.013 (0.009) 0.012 (0.008) 0.012 (0.007) 0.009 (0.008)

1yt 0.019 (0.023) 0.016 (0.015) 0.019 (0.019) 0.010 (0.013)
0.001 (0.001) 0.001 (0.001) 0.001(0.002) 0.001(0.002)
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Figure 1. Wine data: plot of the estimated posterior means of the g = 2 factors (A, o, and *x denote true
component membership).

Based on McLachlan and Peel (2000), the misclassification rate is smallest for ¢ = 2 and
3. In our analysis, g = 2 is used as our reduced dimension. Figure 1 shows the estimated
posterior means of the g = 2 factors following a three-component MFA of the wine data,
which is actually the a;; calculated from E-step. These posterior means have been plotted with
their true group labels corresponding to the three different cultivars displayed. From Fig. 1,
we can see that MFAs have been useful here in exploring the grouping structure of the data
in a much reduced dimension.

To assess the robustness of the two estimation methods, we also consider the contaminated
data by adding 1% and 3% outliers from U (9, 11). Table 5 displays the estimated means u,,
I,, and g5 via MLE and TLE when the proportion of outliers are &y = 0, 0.01, and 0.03, and
Table 6 displays the estimated component proportions 7; and m,. The true parameter values
are calculated by using true classification labels based on the cultivars of the wines. From both
tables, we see that when there are no outliers (og = 0), both MLE and TLE can provide com-
paratively good estimators. When the data are contaminated, however, TLE performs much
better than MLE. As the proportion of outliers gets higher, MLE departs further away from
the original MLE, while TLE does not change much when the outliers are added to the data.

5. Discussion

MFAs have been popularly used to do dimension reduction and model-based clustering for
high-dimensional data. In this article, we investigate a robust estimation procedure of the
MFAs based on the TLE proposed by Neykov et al. (2007). The simulation study and real data
analysis demonstrated the effectiveness of the TLE-based robust estimation procedure.

It is well know that the scale estimate by TLE is biased for univariate data. A scale factor
is usually needed to make the scale estimate an unbiased consistent estimator. Based on our
limited empirical experience, the TLE-based covariance estimates for MFAs are also biased.



COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 1289

Table 5. Wine data: estimated means with «; = 0, 0.01,and 0.03.

ay =0 a, = 0.01 a, = 0.03

True MLE TLE MLE TLE MLE TLE
73 13.74 13.66 13.74 13.44 13.74 12.34 13.73
2.01 1.99 2.01 1.61 2.02 0.21 1.99
246 247 2.46 2.09 2.46 0.79 243
17.04 17.49 17.05 16.42 17.18 15.77 17.01
106.34 107.87 106.30 105.67 106.04 105.95 105.34
2.84 2.85 2.84 2.50 2.84 129 2.84
2.98 3.00 2.98 2.69 2.98 21 2.96
0.29 0.29 0.29 —0.03 0.29 —125 0.28
1.90 1.92 1.90 1.53 1.90 0.66 1.87
5.53 5.44 5.52 529 5.53 7.09 5.50
1.06 1.07 1.06 0.71 1.06 —0.40 1.06
3.16 3.16 3.16 278 314 1.53 314
ms5.71 1097.23 ma.n2 1144.08 Mm5.45 1284.31 115.80
"y 12.28 12.28 12.30 12.34 12.32 12.92 12.30
1.93 1.95 1.96 1.98 1.95 1.97 1.97
224 222 225 2.26 224 233 224
20.24 19.96 20.26 20.21 20.09 18.88 20.08
94.55 91.86 90.09 94.98 90.07 99.06 9130
226 223 223 230 224 2.51 224
2.08 2.04 2.06 214 2.05 2.48 2.07
0.36 037 0.38 037 0.37 0.33 0.38
1.63 1.60 1.55 1.64 1.53 175 1.59
3.09 3.05 3.07 317 3.07 41 3.06
1.06 1.05 1.06 1.05 1.05 1.06 1.05
279 277 279 2.82 278 2.95 278
519.51 502.67 496.14 534.54 496.23 777.10 498.36
"y 13.15 13.12 13.13 13.12 13.12 131 13.12
333 331 337 330 330 327 329
244 244 243 244 244 243 2.44
21.42 21.42 21.34 2142 21.41 2133 21.41
99.31 100.03 99.35 100.03 100.04 100.02 100.05
1.68 1.68 1.65 1.68 1.67 1.68 1.67
0.78 0.79 0.77 0.79 0.79 0.80 0.79
0.45 0.44 0.45 0.44 0.44 0.44 0.44
115 1.16 112 1.16 1.16 1.15 1.16
7.40 729 7.27 7.28 7.27 7.25 7.25
0.68 0.69 0.69 0.69 0.69 0.69 0.69
1.68 170 1.68 1.70 1.70 1.69 1.70
629.90 630.27 629.56 630.53 631.24 627.43 632.32

However, it requires more theoretical studies whether a scale or vector factor could make the
TLE-based covariance estimator unbiased and consistent.

In our examples, we have fixed the trimming proportion to be 0.05 for TLE. It works well
whenever the true proportions of outliers are no more than 5%. However, it requires more
research to find a data adaptive optimal or conservative trimming proportion for TLE in

Table 6. Wine data: estimated component proportions with &, = 0, 0.01, and 0.03.

ayg=0 a, = 0.01 ay = 0.03

True MLE TLE MLE TLE MLE TLE

0.3315 0.3516 0.3516 0.3049 0.3386 0.0331 0.3201
2
2
0.3989 0.3726 0.3726 0.4190 0.3697 0.6853 0.3869
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practice. Neykov et al. (2007) recommended a graphical tool to choose the trimming pro-
portion in their examples. However, based on our limited empirical experience, such graph-
ical tool was not very successful in choosing the trimming proportion for MFAs. There have
been many methods proposed for choosing the trimming proportion for TLE in the nonmix-
ture context. For example, Jureckova et al. (1994) studied the problem of choosing the trim-
ming proportion for a trimmed L-estimator of location, and recommended the L-estimators
with smooth weight functions. For the trimmed mean in the location modeling and for the
trimmed least-squares estimator in the linear regression model, Dodge and Jureckova (1997)
proposed a partially adaptive estimator of the trimming proportion based on a rank-based
decision procedure. Clark and Schubert (2010) studied an adaptive TLE of regression, whose
algorithm tends to expose the outliers automatically and provide the estimators with the out-
liers removed. It will be interesting to know whether we can extend the foregoing methods to
adaptively choose the trimming proportion for TLE in the mixture context.
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